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TEARING INSTABILITY IN AN ANISOTROPIC NEUTRAL SHEET

I. INTRODUCTION

In this paper, we investigate the tearing-mode stability properties of
4-5

a field-reversed plasma layer whose temperature distribution is anisotropic

(T I * T ). The symbols I and I refer to directions perpendicular and

parallel to the equilibrium magnetic field, respectively. Figure 1 shows a

schematic drawing of the geometry and the coordinate system. The equili-

brium magnetic field B (z) - B0 (z)x, indicated by the solid lines, is

generated self-consistently by the current J (z) = J o(z)y with no external

magnetic field. The magnetic field reverses its direction in the plane

z = 0 and Jo(z) is symmetric in z. Both ions and electrons are assumed to

contribute to the equilibrium current. The number density no(Z) is also

shown in the figure. In this one-dimensional equilibrium, all physical

quantities depend on z alone. The plasma is assumed to consist of

collisionless ions and electrons so that Vlasov equations are used for both

species.

It is well-known that inertia of the current carriers can lead to

collisionless tearing instability in a system such as the one described

above. Considerable work has been done on the basic collisionless tearing-

mode properties of the neutral sheet configuration -8 .  An example of

physical systems that may be modelled by this configuration is the earth's

magnetotail9. Subsequent to the early work, tearing-mode results have been
10,11considered in connection with the magnetotail I0 I . In these studies, the

neutral sheets are generally assumed to have isotropic temperature

distributions (Ti = T ). However, in a collisionless plasma, the motion of

particles parallel to the magnetic field is decoupled from the

perpendicular motion and temperature anisotropy can be maintained even in

thermal equilibrium. Laval and Pellat1 2 used an energy principle analysis

to show that collisionless tearing-mode properties can be strongly modified

by weak temperature anisotropy. In particular, it was found that the

k l B mode can be stabilized by a very small degree of electron

* temperature anisotropy: Tel/Tel < (1-a e/6) where ae  is the electron

gyroradius and 6 is the layer half-thickness. In this work, neither the

dispersion relation nor the marginal condition for the anisotropic case was

given. Recently, Chen and Davidson 1 3 carried out a Vlasov-fluid analysis

of a field-rqversed ion layer at marginal stability using approximate

Manuseript approved July 14, 1983.
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Fig. 1 Schematic drawing of a neutral sheet and the coordinate system.
The magnetic field B (z) reverses direction at z 0 . The dashed

lines indicate the magnetic field configuration including the

perturbation.
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orbits in a cylindrical coordinate system. It was found that relatively

small temperature anisotropy in ions significantly modified the stability

boundaries. Consistent with the results of Ref. 12, the range of unstable

wavenumbers is reduced for Til/T. ! < I and is increased for Ti±/Ti1 > 1.

More recently, Basu and Coppi1  studied a fluid-like "field swelling"

instability in an anisotropic plasma in which the magnetic pressure is

comparable to the particle pressure and in which there is no equilibrium

current. This analysis is local and is based on the fluid equations.

However, in the neutral sheet configuration, the instability is

intrinsically nonlocal and the plasma $ is much greater than unity in the

field-null region so that the fluid equations are invalid. Thus, the

treatment of Ref. 14 is not applicable to the tearing-mode instability

which is due to resonant particles crossing the field-null region.

A difficulty in treating the neutral sheet configuration is the

complicated particle orbits1 5. In order to make the problem tractable

analytically, "straight-line" approximations have often been used 8 'I0 for

the particle orbits crossing the null plane. Numerically, the problem is

also difficult. In a noteworthy but rarely referenced work, Holdren1 6

utilized an integrodifferential equation formalism to show the feasibility

to treat the various orbits exactly. In order to minimize the numerical

errors, relativistic electrons with large orbits were used and no

definitive comparison can be made betweeu the relativistic numerical

results and the previous nonrelativistic, approximate results5 .  In

addition, the numerics required are prohibitive and it is in general

difficult to use this method.

In the present model, we will adopt the straight-line orbits but

improve the treatment of the ion orbits. The effects of the small Larmor

radius orbits will also be considered. The anisotropic collisionless

tearing-mode analysis is carried out for perturbations of the form

*(x,z,t) = ;(z)exp(ikx-iwt) where the wavevector k is taken to be parallel

to the equilibrium magnetic field. In Fig. 1, the dashed lines indicate

schematically the magnetic field lines including the mirror-like

perturbation given above. As a general remark, the problem treated here is

different from that of tearing instabilities in tokamak discharges 18

because the tokamak geometry would have an applied magnetic field in the y-
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direction (Fig. 1). This alters the prticle orbits significantly. The

configuration studied here is more closely related to certain 6-pinches and

ion layers.

In Section II, we present the basic linear analysis of the

perturbation. In Section III, simplified particle orbits are used to

obtain the eigenvalue equation. This equation is solved to give the linear

anisotropic dispersion relation. Section IV discusses the results.

11. FORMULATION

Figure 1 shows a schematic drawing of a neutral sheet. We assume that

there is no equilibrium electrostatic field and no bulk motion of the

plasma (i.e., E x B - 0). We consider a class of equilibria described by

foj = foj((H 1 j - VjPyj, H 1) where j - e,i and (Hij, Pyj, Hj) are the

single-particle constants of the motion in the equilibrium magnetic

field. Here, H1  (mj/2)(v2 + v 2 ), Pyj = mjVy + (qj/c)Ay(z)

H '/2'2 and A0 (z) is the vector potential for the equilibrium
Ij j x y

magnetic field, where qj is the electric charge, mj is the mass, and Vj

constant is the mean drift velocity of the species J.

A. Linear Eigenvalue Equation

The analysis is carried out for perturbations of the form *(x,z,t) =

*(z)exp(ikx-iwt) where the wavevector k - kR is parallel to the equilibrium

magnetic field. The magnetic field configuration including this

perturbation is indicated by dashed lines in Fig. 1. The characteristic

frequency is low with I << Wci where wci - eBo/mic is the ion cyclotron

frequency in the asymptotic magnetic field B B(z Moreover, we

consider the case where kve - Wci which is true for a wide range of

parameters of interest so that we also have typically IUi << kve, where ve

is the electron thermal velocity. This will be verified a posteriori.

Using the standard method of characteristics, the first-order Vlasov

distribution function for each species is

fl - f dt-(El + 1 v- x B) __,- fo()tj 1 C 3 a

4



where (xA, v') represents the particle orbits in the equilibrium field with

the conditions x'(t' - t) - x, v'(t' - t) - v and *(t + --o) - 0 for all

perturbation quantities. The time integration is carried out along the

unperturbed orbits. In the above equation and in the remainder of the

paper, the species index j - e,i is suppressed where no confusion arises.

The perturbed fields are given by

B V x , (2)

EI = -V c (3)

411

V x B 4 1 (4)
-. c

and

V 0 El 4wpl, (5)

where A1 and * are the perturbed vector and scalar potentials. In this

paper, we choose the Coulomb gauge (V . A = 0). Because the

characteristic frequency of the perturbation is low, w << wci' we assume

charge neutrality to first order. Note that Bly(xzt) - 0 for the mirror-

like perturbations so that 1- J1y(xZt)y and A, - *(x,z,t)y.

For the general form fo fo (H - V HPy, Ru) note thatof o fo Vjn)f ntota

afaf af0  af0
- +- Vx.

Using Eqs. (2) and (3) in Eq. (1), straightforward calculation yields

f af 0 +iWS ikqaf 0 af0vS(6
i I i-1 I X

where Sy is the orbit integral along the unperturbed orbits given by

t 1v

Sy fdt'( -d

and

5



V

j C C

is the uniform mean drift velocity normalized to the speed of light c

Here, use has been made of /at + -iw and a/ax + ik. For the isotropic

case, the last term in Eq. (6) vanishes and we trivially recover the

previous results8 . For the anisotropic case, estimating vx by the typical

thermal velocity vth, we note that the ratio of the second term to the

third term is of the order of w/(kvth) which makes the last term in Eq. (6)

small in comparison with the first two terms for low frequency

perturbations except for a very small degree of anisotropy. This means

that the marginal state
13 and the growth rate can be significantly modified

in comparison with the isotropic case. It is the purpose of this paper to

give a quantitative illustration of this point.

Another consequence of the low-frequency nature of the perturbation is
8

that the perturbed scalar potential * is much smaller than (v y/C)4 . This

can be seen by noting that the electric field Elx along the magnetic field

is at most comparable to the components perpendicular to the magnetic

field, say, Ely. That is to say, Elx ( Ely. This implies

V vthc

For the low frequency case ( << kvth), * is much less than (vy/c)* where

vy Vth for the typical thermal particle. Physically, this is simply a

statement of quasi-neutrality at low frequencies. Although it is

theoretically straightforward to include *, we will adopt the

simplification of neglecting * in comparison with (vy/cC) • Then, the

approximate perturbed distribution function is

fJ - _q$ af * + ia f S-ikq(afo x S

where the orbit integral (Eq. (7)] has been simplified to

Sy - f dt'v'*. (9)

The firf term in %q. (8) is the usual adiabatic term which does not depend

on the . d'le. particle orbits. The second term represents the change in

6



momentum and the third term represents the change in energy of the

particles. In particular, ikqSy is the time-integrated Lorentz force

acting on the particles in the x-direction.

B. Anisotropic Plasma Layer in Thermal Equilibrium

In the preceding section, we have described the general theoretical

framework appropriate for equilibria of the type foj (Hi - V.P yH I). To

examine the stability properties in detail, we specialize to the case where

the plasma layer consists of two species (electrons and ions), both

satisfying the two-temperature Maxwellian distribution given by

f 0 i_______/ expf- T (H j _ VjPyj)]exp(- T L H .), (10)foj = 2irTl/m j 12Tl/m TI~ Ij , (0

ij i /2wT /M ii lij

where Hi (m /2)(v2 + v2 ), P = m) + (z), 11 (m ./2)v 2,
ij i y z yj wj'Vj (/)yz) Ii w x

Vi = constant is the mean velocity of the species j, and A (z) is the
y

vector potential for the equilibrium magnetic field. As stated before, the

electrostatic field is taken to be zero in the frame of the layer.

The equilibrium particle density and magnetic field profiles

corresponding to Eq. (10) depend only on the perpendicular temperature and

are well-known
1 7

n (z) n sech2  (11)

and

2cT /6
0 1zB = tanh (12)S e(Ve-V)

where 6 is the characteristic half-thickness of the plasma layer given by

c 1/2 1 (13)

i e(V-e2wn

Here, T1 = Tii + Tei and no is the maximum number density at z - 0 for
0

both species. For z + m, we have Bx(z + ) B with

B /8 nT , (14)

7



where Bo > 0 is chosen without loss of generality. This choice implies

(Vi-Ve) > 0 so that the total current is in the +y-direction, given by

J (z) - e(Vi-Ve)no(z)y. (15)

Because of charge neutrality, the equilibrium ion and electron densities

are equal. It is easy to show that the zero electrostatic field condition

is equivalent to

TiV + T elV 1 0. (16)

If we denote the gyroradius of the thermal particles by

Vji /c where vj1 i 2T ±/m and cj o eBo/mjc with BO given by

Eq. (14), then it is easy to show by using Eqs. (13) and (16) that

a IV I
- I-Y (17)

6 ji

and

qj 2 (18)
cTjl Bo6

As a general remark, the equilibrium configuration described above is

obtained by balancing the Lorentz force c-1 (J, x B) with the perpendicular

pressure gradient -(a/az)[no(z)TI].

III. Stability Properties for an Anisotropic Neutral Sheet

A. Model Orbits

In order to determine the stability properties of the system described

by Eqs. (10)-(18), the orbit integral Sy [Eq. (9)) must be evaluated.

Generally, the orbits in the equilibrium field are complicted. 1 5  In the

previous calculations on the isotropic neutral sheets, "straight-line"

orbits 8 ,1 0 have been used to evaluate the orbit integral. In these

approximations, the neutral sheet is divided into two regions. In the

inner region, Izi < d - /a6 where the magnetic field is weak, the orbits

8



are taken to be straight lines across the null-plane (z 0 0) and reflected

from the surfaces at Izi : d Thus, v is nearly constant in this

region. In addition, the perturbed vector potentrial J = Aly is assumed

to be constant in the inner region (constant-p approximation). In the

outer region, Iz > di, the particles are assumed to execute nonaxis-

crossing small Larmor radius orbits and these orbits are neglected. In

particular, in Ref. 8, the dispersion relation is obtained by matching the

inner and outer solutions at z - V2a e6. This approximation neglects the

axis-crossing ion orbits that extend far beyond the electron inner region

since di/de - (mi/me)1/4 . Although the effects of the axis-crossing

electrons are greater than those of the axis-crossing ions, the ion effects

dominate in the intermediate region de < Izi < di , as will be shown in this

section. In the isotropic case, it will turn out that the neglect of the

intermediate region does not change the dispersion relation

substantially. However, in the anisotropic case, the ion orbits in the

intermediate region affects the dispersion relation significantly. In the

present analysis, we include the three regions (Fig. 2) and define the

boundary surfaces at

d /2a6 (19)de

for the electrons and

d /ai6/2 (20)di

for the ions, where a- v /w is the Larmor radius of a thermal particle
_______ji ci

with v V /2T /m . Physically, de is the distance where the local

electror radius ae(de) / (d ) is equal to d /2.
elcrn Lro ais a1e e ce e e

Here, Wce (de) - eB (d e)/mec. di is the distance where the local ion

Larmor radius ai(d) = vil Wci (d ) is equal to di. The factor of J is

somewhat arbitrary and is chosen to avoid overestimating the large ion

orbits. Moreover, this choice allows the use of the constant-

approximation in the region Iz1/6 < d /6 << I.

The orbit integral Sy [Eq. (9)] will now be evaluated for the three

regions as shown in Fig. 2. In the respective inner region for each

species, the orbits consists of nearly straight segments 8 ' 10 and vy is
#'9
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0 de i
Fig 2 Shmtcdaigo elcrn ndio oris
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nearly constant. Then, from Eq. (9), the approximate orbit integral is

Sin . Ic- v (x,z,t)(kvx-W)-  (21)
y y

where vx is an exact constant of the motion and the constant-* approxi-

mation has been used. Using Eq. (21) in the first velocity moment of flJ,

we obtain the perturbation current densities for the inner regions (region

I for electrons and regions I and II for ions),

in c 2Ti 1 62 +
'-[I + -0

li 4nn 62 TI k'i a2 kvi,
0 ii1 2

-a - + 1)W(wi)In° , (22)

ii

and

in 2Tel 1 62
l[ + ( W )(T - + 1)z W_)le 4, 62 T1  el a2  el

o e

- v e l)W( fl)]n(z), . (23)
e

where the anisotropy parameter is defined by

T !. (24)
T!

The dispersion function is given by

1 fd exp(-x2)
Z( ) - f dx4/ --

and

1
w( ) -- '()

In deriving Eqs. (22) and (23), use has been made of the equilibrium
properties, Eqs. (13), (14), (16) and (18), and vj! - 7--.

J1 if

In the outer regions, regions II and III for electrons and region III

for ions, the particles mainly execute VB drift motion with the drift

11



velocity V given by

vi qB y sinh 2 Z) (25)

where v2 = v2 + v2 is a constant of the motion. This expression is a good
y z

approximation for the guiding center motion in the outer regions for most

particles (aj << 6) except for the ones with kinetic energy much greater

than the thermal energy. Note that, for thermal particles (v, = v j),

VD/v is of the order of (aj/6) sinh-2(z/6) so that VD/v is of order

unity near z = d . The actual motion of a particle is then

vy V3 + 1cos(wcjt + X)
y D

and

vz ivsiln(wcjt + A),

where w cj is the local cyclotron frequency, is the gyration velocity in

the VD frame and X is the phase angle. Then, the approximate orbit

integral Sy for the outer regions is

s icVikvx-w) -c v dt'cos(w cjt + x)*.
y D'xc

The second term represents the oscillatory motion in the guiding center

frame. Taking the phase average over A for the low frequency perturbation,

it is easy to see that the second term averages to zero and we have

Sout . ic- lV(kv -)-l *(x,z,t) (26)
y D x (xzt

Integrating over the velocity space and after some algebra, we obtain

out c 2T W Z(w/kvil)
out c Til - ____4.n 62 I il sinh 2 (z/6)

0

12



W(W/kv i )

+ 1,a In o(Z)*' (27)
sinh2(z/6)

and

out c 2Tel W ) Z(w/kv )
le 'v 2Tl k -

4we 0 62 f e sinh2 (z/6)
0

W(ca/kv e )
+ -e  ]no(Z)*. (28)sinh2(z/6)

In obtaining these expressions, use has been made of the equilibrium
relationships Eqs. (17) and (18), and a2 /62 << 1 has been dropped.

j

The third term in the square brackets of each equation is the

anisotropy term. In Ref. 8, where the isotropic case is treated, the

second term in each equation is neglected by using the ordering
32in sngetd n

(w/kv (a16)3/2 << 1 and the ion contribution is neglected in
S19 Eq.

region II. Galeev and Zelenyi1 9 estimated the drift velocity by VD [Eq.

(25)] without the factor sinh 2 (z/6) and concluded that this contribution

is small. However, as the discussion following Eq. (25) shows, this term

can be of order unity in Eqs. (27) and (38) near z - de . Moreover,

Dobrowolny and Galeev and Zelenyi matched the interior (Jzj < de) and

exterior (Izl > di) solutions at z - de by arguing that the interior

electron contribution to the perturbed current density (Eq. (23)] is much

greater than the external ion contribution (Eq. (27)] for IzI > de.  This

argument overlooks the fact that the axis-crossing ion orbits extend far

beyond the electron inner region (Jzj - de) so that the relevant comparison

in the intermediate region (region II) is between the exterior electrons

[Eq. (28)] and interior ions [Eq. (22)]. For the case in which ions and
.in..out

electrons are both anisotropic, the ratio J in/Je at z - de in region II
is approximately (ai/ae)(me/mi)(6/a e) which is typicality of order

unity. For the case in which only ions are anisotropic (ue f 0), the

ratio is approximately a4(6/ae) 5/2(me/mi) which is much greater than

unity. As z increases to di, the ratio increases because of the factor

sinh 2 (7) in the electron contribution. Thus, in general, the ion

contribution is not negligible in the intermediate region. Moreover, this

intermediate region is wider than the electron inner region by a factor of
i1



dude = (T T 1/4 / i/4/2
di/d e  (Til/TeL) (mi/me) /2. For comparable Til and T e, this

quantity is roughly 4. The intermediate region is in turn thinner than the
sheet thickness 6 by a factor of Va /26 << 1. In this paper, we treat the

three-region matching problem (see Fig. 2); in region i, the total currentin in inn

density is JIT = (Ji+ Je) ; in region 11, J in + Jout) ; in regionIT le ) le IT regionl
=.out OUt,

1lU, the current density is "JIT + Je ) "

B. Linear Dispersion Relation

The linear eigenvalue equation is obtained by substituting Eqs. (22),

(23), (27) and (28) into Eq. (4) according to the three-region scheme

described in the preceding section. The equation is then solved subject to

the following conditions. The solution ip must be such that its first

derivative (Op/az) vanishes asymptotically (IzJ + w) and that the

logarithmic derivative is continuous at Izi = de and IzI = di. For the

inner region (I), the eigenvalue equation is found to be

-- 2 (Z) (29)
dz'2

where *(x,z,t) = (z) exp(ikx-iwt) and

(_I62+ 1)[( 0- )Z ) Lw( w ]
A2  - 2 + Tii. 6

A 11 T 2a 2  kvil k ii k
T ei 62+ ( -IM '0 )z(- -- - C'w(k W ] (30)

1 a2  eli ei e el

ee
with sech2 (z6 I for Izi ( de <( 6. Here, k - k6 and z = z/6. By !

setting a ae 0, Eqs. (29) and (30) reduce to the inner equation of

Ref. 8. In general, A is independent of z and the solution is

^n
,n(z) - C cosh(Az) (31)

where C is an integration constant and the symmetric solution has been

chosen.

In the intermediate region II, the eigenvalue equation takes on the

form

q_ 2 - 211 Ti+ 6

dz2  I. a2  kv i Wil il

14

1 _ A -" '



2T .2Tel _ aeW( w )sinh-2-()j

x sech 2 (7)*. (32)

It is easy to see that the inner ion orbit contribution dominates the small

gyroradius electron contribution in this region.

In the exterior region tzl > di, the orbit of both species are mainly

of the small gyroradius drifting type and the eigenvalue equation takes on

the form

d2~, [2 -2 sech2()I + 21-[( -( L. W- aw
dz2  T it it iii

TTel ()(I)---(3

+W-Z(v- w aeW( )I }sinh-2(z) sech 2(z)"3
TI k l e l enk el (3

Asymptotically, where the VB contribution vanishes due to near uniformity

of the equilibrium magnetic field, the solution of the above equation is
2 0

*.(z) - D(l +1 tanhtzl)exp(-k1Zt), (34)

where the even solution is chosen and D is an integration constant. As

required, the first derivative is proportional to exp(-ik'i) and vanishes

as Iz'I +-.

If we set ai - ae - 0 in Eq. (30) and match the inner and asymptotic

solutions [Eqs. (31) and (34)] at z - de, then the isotropic results of

Ref. 8 are recovered. Equating the logarithmic derivatives of Eqs. (31)

and (34) at z - de, we obtain the linear dispersion relation

A tanh(A-e) -(1 + k-ltanh e)[-lsech2 e - -- 1(1 + 1-ltanh -e ,

(35)

where A is given by Eq. (30) and de =-d e/6. This is equivalent to the

series representation in terms of generalized Legendre functions given in

Ref. 8. Neglecting terms of order d << 1, the right hand side can be

simplified and we have approximately

15



A tanh ( .k)- - (36)

Using the small-argument expansion of Z function in Eq. (32), we find

(Aide) << I for the low-frequency perturbations. Then, keeping only the

leading terms in Eq. (36), we find that the instability is primarily due to

the resonant electrons and

y ( ae)3/2 1 )T (37)
ei e k

which is identical to the isotropic result8 . It shows that (y/kv eN) << 1
scales as (a e/6)3/2 and that y > 0 (unstable) for k < I and y < 0 (stable)

fork > 1. By setting y - 0 and neglecting terms of order de we find

the marginal condition

0 1 -,

0-- -k ,
V
0

and the marginal wavenumber k°  1, recovering the previous result

For the anisotropic case, the approximate dispersion relation is still

given by Eq. (36) with a* * 0 in A [Eq. (30)). As we can see from Eq.

(30), the electron anisotropy effects are large because of the small22/2

gyroradius (aif/a 2 m/me, 62 /a >> 1). As a result, it is likely that

nonlinear effects become important for electrons on a time scale comparable
-i

to W . This makes the present analysis unsuitable except for very

small degrees of electron anisotropy, viz., ITel/T ei - 11 << ae /6. Thus,

in the remainder of this paper, we will primarily consider the case with

anisotropic ions and isotropic electrons. Then, keeping only the leading

terms, we have

2A Y ) i~ + 2.( T )1( m) (38)A e) 2( + 2+i lI + Ti a m
e el e. el. e i

where ai = - Ti./Til). In marginal state, y - 0 and

T m
(~e )2 , - (l +i.)1 A

T i a e i,

For systems in which (ae /6) and (me/m ) are comparable such as the

16



magnetotail, ( (( 2 << 1. Then, the marginal wavenwaber k is given by

-~ I c Tl + i.L-l(i)(1-)11. (39)
k el e

0

Using Eqs. (38) and (39) in Eq. (36) and keeping only the leading terms, we

find

a 13/2 T + --- ( e 3/2

el i2ei k el i e (40)

This is the approximate anisotropic dispersion relation obtained by

matching the inner and asymptotic solutions at z - de. From Eq. (40), we

find that the normalized growth rate y/wci has a maximum at

0

and

I.mx - ( )5/2( m)( + --)(i + Z). (41)
ci e ei

Equation (36) is obtained to show the basic properties of the

isotropic and anisotropic dispersion relations. One noteworthy property of

this equation is that A is either purely real or purely imaginary. Using

small-argument expansion of Z and W functions, it is easy to see that w is

nearly purely imaginary for the low-frequency perturbations being

considered, as we assumed in the preceding discussion of approximate

solutions. In the remainder of the paper, we specialize to the case of

imaginary frequency with w - iy so that y > 0 corresponds to

instability. The transcendental equation (36) has also been solved

numerically to obtain the dispersion relation in detail. Figures 3 and 4

show the growth rate y normalized to the asymptotic ion cyclotron

frequency w i versus the normalized k k6. The dispersion curves are

shown for several values of Ti±/Ti and two values of (atI/8), 0.03 and

17
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Fig. 3 Normalized growth rate (y/w i) versus k65 for a,/6S 0.03 using

the two-region approximation [Eq. (37)). The value of T /T is
il if

(a) 0.9, (b) 1.0, (c) 1.1 and (d) 1.15. (T el /T 1).
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Fig. 4 Normalized grovth rate (y/wc,) versus kS for a/6 -0.05 using

Eq. (37). The value of Tl/T is (a) 0.9, (b) 1.0, (c) 1.1 and

(d)1.5.(Tel /Tel



0.05. In particular, the value a /6 - 0.03 roughly corresponds to the

quiescent magnetotail parameters. In addition, we have used T i/T ei - 2.

In this case, a e/6 = 5 x 10
- 4 .
e8

The curve b in each figure corresponds to the isotropic result 8 with

the marginal wavenumber k6 - 1 independently of (a1 /6). Consistent with

the previous conclusions1 3 , we find that temperature anisotropy

with T i/Tin > 1 is destabilizing while anisotropy with Tii/Tin < I is

stabilizing. Here, k is parallel to B so that the case with the greater

temperature perpendicular to k is more unstable. These figures also show

that Eq. (39) describes the stability boundary accurately. For example,

for T i/Tin = 1.1 and a /6 = 0.03, we have k0 = 2.67. For a /6 = 0.05, we

have k = 1.68, in agreement with these figures. In addition, Eq. (40)0

is a good approximation for all the curves shown in these figures. In

comparing Figs. 3 and 4, note that the two values of a /6 correspond to

different values of 6 and wci so that y and k are normalized to different

scales [see Eqs. (14), (17) and (18)]. The curves are not completed for

k6 = 0 because the theory breaks down as k + 0. Comparing curves a, c and

d with curve b in each of Figs. 3 and 4, we see that the effect of

anisotropy is substantial. This is expected because the anisotropy term,

the third term in Eq. (8), is greater than the isotropic term by a factor

of (kv /1w) >> I. In thit regard, we point out that Laval and Pellat 1 2

used an energy method to show that the mode treated here is completely

stabilized for

T a
el<

< -. (42)
el 6

For the parameter used in Fig. 3, the right hand side is approximately

0.9995. Using this value of electron temperature anisotropy in Eq. (37),

we find that the mode is in fact completely stabilized. With electron

anisotropy, the square brackets in Eq. (40) would contain another term

identical to the second term except for the replacement e - i and

m e/mi + 1. [See the discussion preceding Eq. (38)]. The reason for the

extremely sensitive dependence on the electron anisotropy described above

is that the electron term without the small mass ratio enhances the

anisotropy effects discussed above. As a general remark, we note

that y/w c is typically of the order of 10- 4. In addition, y/kv is also

20



of the order of 10- 4 for the unstable parameter regimes for both species.

Thus, the low frequency approximation used to derive Eq. (8) is justified a

posteriori.

So far, we have examined anisotropic tearing-mode properties using the

two-region matching method following a number of previous works. However,

examination of Eq. (32) shows that, in the intermediate region, it is the

ion orbits that dominate. Furthermore, because di >> de, the effect of

these ions is expected to be large. In order to study the anisotropic

properties including the intermediate region, we have numerically

integrated Eqs. (32) and (33) in regions II and III. The physically

acceptable solution must have the asymptotic behavior given by Eq. (34) and

the logarithmic derivative must be continuous at z = di and z = de. At z =

des the derivative is matched to that of the analytic solution, Eq. (31).

The matching condition then gives the linear anisotropic dispersion

relation. The results are plotted in Figs. 5 and 6 for several values

of T i/T and for two values of a /6, 0.03 and 0.05. Here, the electrons

are isotropic.

Comparing Figs. (3) with (5) and (4) with (6), we see that inclusion

of the ion orbits in the intermediate region modifies the growth rate and

the stability boundary significantly. In general, the anisotropy effects

are further enhanced by the inclusion of the intermediate region (region

II). That is, for T il/T < 1, the mode is more strongly stabilized with

the intermediate region than without it. For T ii/T > i, the

instability is more strongly enhanced with the intermediate region than

without it. However, the isotropic dispersion curves obtained using the

"three-region" matching method are nearly identical to the corresponding

ones obtained using the two-region approach. The absolute value of (y/Wc i)

of curve b in Fig. 3 is greater than that of curve b in Fig. 5 by

approximately 3% to 4% (ai/6 - 0.03). The absolute value of (y/w c) of

curve b in Fig. 4 is also greater than that of curve b in Fig. 6 by similar

amounts (ai/6 - 0.05). This agreement is nontrivial since Eq. (32) shows

that the dominant ion orbits in the intermediate region modifies the

eigenvalue equation significantly and indicates that the isotropic

dispersion relation is indeed determined primarily by the resonant

electrons in the inner region Izi < de. The above behavior can be

21
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Fig. 5 Normalized growth rate (y/w ) versus k6 for a116 -0.03
including the intermediate ion region. The value of T11/T is

(a) 0.9, (b) 1.0, (c) 1.05, (d) 1.1 and (e) 1.15. (T iT el 1).
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understood from Eqs. (6) or (8) by noting that ikqSy is the time-integrated

Lorentz force in the x-direction causing the particles to bunch. Since the

ion orbits are larger than the electron orbits by approximately d1/de2 4,

the accumulated influence is also increased. It is evident that the

Lorentz force term is zero in the isotropic case. It is of interest to

note that the force responsible for the anisotropic effects is similar to

that in the mirror instability20 . However, unlike the mirror instability,

there is no threshold value of T i/T in that is required for the onset of

the anisotropic effects.

Figures 5 and 6 show that for T l/T in > 1 the maximum growth rate is

enhanced by one order of magnitude or more from the isotropic case and that

the marginal wavenumber is increased. For T il/T < 1, the instability is

essentially stabilized. Note that, as before, (y/wci) is typically of the

order of 10- 4 so that the low frequency approximation is justified. The

results are shown for T i/Tit up to 1.15. For higher (Til/Tin > 1.3)

degrees of anisotropy, the increasing value of (y/w c) would render the low

frequency and constant-* approximations invalid. The dashed line (e) in
Fig. 6 shows the dispersion curve for T i/Tl = 1.1 with the VB

contribution neglected. We see that the qualitative behavior is not

significantly changed and that the VB drift has the opposite, albeit small,

effect from the axis-crossing orbits. This is easy to undervi snd siwTt'c the

guiding center of a drifting particle is opposite tG the mean drift

velocity of the plasma layer [Eq. (25)].

Figure 7 shows the maximum growth rate (y/wci)max as a function of

temperature anisotropy (Til/Tif). In Fig. 8, we have plotted the eigen-

function *(z) for Izi > de for two values of T il/T . Both curves

correspond to the respective maximum growth rates (y/w ci)max The matching

surfaces at Izi de and Izi - di are also shown. We see that the

constant-* approximation is reasonable for the values of Ti /Ti used

here. However, for T i/Tit > 1.3, the variation in , within the ion layer
becomes substantially greater.
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Fig. 6 Normalized growth rate (y/wci) versus ka for ai / - 0.05

including the intermediate ion region. The value of T II/TI is

(a) 0.9, (b) 1.0, (c) 1.05, (d) 1.1, (e) 1.1 with VB neglected

and (f) 1.15. (TelITe! . I).
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Fig. 7 Maximum growth rate (Y/Wci)max versus Til/Til for

a 0.03 and Te/T 1.
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IV. SUMMARY

In this paper, we have investigated the collisionless tearing-mode
properties of an anisotropic (TI * T ) neutral sheet. Both ions and

electrons are described by Vlasov distribution functions. Using simplified

particle orbits and constant-* approximation, the perturbed distribution

function is evaluated for low frequency perturbations (y/wci < < 1) with

k I B . The first-order current densities are explicitly found (Eqs.

(22), (23), (27) and (28)] and eigenvalue equation is obtained for the

three regions [Fig. 2 and Eqs. (29), (32) and (33)]. The equation is solved

using both analytic approximations and numerical methods to obtain the

linear dispersion relation (Figs. 3, 4, 5 and 6) and the eigenmode

structure (Fig. 8). First, by neglecting the ion intermediate region

(region II), the conventional two-region matching method is used to find

the approximate anisotropic dispersion relation [Eq. (40) and Figs. 3 and

4] as well as other dispersion properties [Eqs. (39) and (41)]. Then, the

full eigenvalue equation is numerically integrated in regions II and III.

The three-region matching condition then gives rise to the anisotropic

dispersion relation illustrated in Figs. 5 and 6 for a number of parameter

values. It is shown that temperature anisotropy with T il/T > 1

enhances the growth rate by as much as an order of magnitude or more while

anisotropy with T il/T < 1 strongly stabilizes the mode. This is

consistent with previous results based on energy principle 12 and marginal

stability 13 calculations. It is also found that the conventional approach

of matching the inner and outer solutions at the electron inner region (Izi

< de) is not adequate in the anisotropic case. An intermediate region

(de < Iz1 < di) is identified in which the axis-crossing ion orbits are

dominant. It is the ions in this region that account for the substantial

differences as exhibited by Figs. 3, 4, 5 and 6. The use of simplified

orbits also allows evaluation of the effects of different orbits

explicitly. In particular, it is found that the inner orbits and outer

)rbits (the VB drift orbits) have the opposite effects on the growth

rate: where the inner orbits are destabilizing, the outer orbits are

stabilizing and vice versa in the anisotropic case.
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A physical system for which the present analysis may be applicable is

the earth's magnetotail. The previous works on the tearing-mode stability

of such a system have studied isotropic neutral sheets (see, for example,

Refs. 8, 10 and 11). In light of the fact that the magnetotail is highly

collisionless, it is reasonable to expect the temperature distribution to

be generally anisotropic. Our present results suggest that the linear

tearing-mode properties of the magnetotail and similar physical systems are

dominated by the anisotropic tearing-mode. In fact, the k v B mode can

grow significantly faster than previously predicted if temperature

anisotropy is present (a i > ai/a). Thus, the particle temperature

distribution is a critically important quantity for understanding the

linear tearing-mode stability properties.

The present analysis utilized simple approximate orbits in evaluating

the orbit integrals. In the isotropic case, the two-region approach8

yielded results in agreement with numerical results,4 indicating that the

stability properties are not critically dependent on the precise orbits.

In the anisotropic case, however, the large ion orbits are important so

that a more accurate calculation of the orbit integrals is desirable. In

the present analysis, the orbits that are neglected are mainly those of

particles with energy substantially greater than the typical velocities,

constituting a relatively small fraction of the total particles. In

conjunction with the fact that the low frequency and constant-* approxima-

tions are well satisfied by the results, we expect the present results to

be a good first approximation for understanding the essential physics of

the collisionless anisotropic tearing-mode properties.
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